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Abstract

Shotgun metagenomic sequencing has revolutionized our ability to detect
and characterize the diversity and function of complex microbial commu-
nities. In this review, we highlight the benefits of using metagenomics as
well as the breadth of conclusions that can be made using currently available
analytical tools, such as greater resolution of species and strains across phyla
and functional content, while highlighting challenges of metagenomic data
analysis. Major challenges remain in annotating function, given the dearth
of functional databases for environmental bacteria compared to model or-
ganisms, and the technical difficulties of metagenome assembly and phasing
in heterogeneous environmental samples. In the future, improvements and
innovation in technology and methodology will lead to lowered costs. Data
integration using multiple technological platforms will lead to a better un-
derstanding of how to harness metagenomes. Subsequently, we will be able
not only to characterize complex microbiomes but also able to manipulate
communities to achieve prosperous outcomes for health, agriculture, and
environmental sustainability.
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INTRODUCTION

The tools of microbiology—microscopy, culturing, and genetic engineering—have allowed re-
searchers to observe, grow, and experiment on a small number of well-studied organisms, reveal-
ing insights into their biological, ecological, and evolutionary capacities. Yet microbes live nearly
everywhere on Earth, have vast influence over ecosystem services and host health, and are dom-
inant members of all three domains of life. Despite scientific awareness of this diversity, it has
remained unexplored until recently. The advent of high-throughput sequencing platforms has
rapidly enhanced our ability to understand the diversity of species in microbiomes by coupling
physiological data with the underlying genetic data. Thoughmetagenomes have given us glimpses
into the diversity and function of complex microbiomes, this data can itself be incomplete, biased,
and challenging. It is thus important to be extremely critical of and to understand the limitations
of metagenomic data as the scientific community continues to embrace this technology.

Due to the cost, computational footprint, and analytical hurdles of whole-microbiome shotgun
sequencing, amplicon sequencing of the 16S rRNA gene is used broadly to determine the taxo-
nomic identities of members of a microbial community. The 16S rRNA gene, ubiquitous in all
bacteria and archaea, was chosen as a genetic marker for taxonomic identification for several rea-
sons. Barring some exceptions, this gene is evolutionarily stable, meaning that it has gone through
little horizontal gene transfer, follows a molecular clock, and has regions of conservation and re-
gions of divergence. For most microbiomes, several tens of thousands of sequences are adequate
to assess the diversity in a sample (55), and as of 2020, the cost of DNA extraction, library prepa-
ration, and sequencing would cost less than $25–50 per sample, depending on the number and
sample type, making this data type the most broadly accessible. With this accessibility has come
streamlined analytical platforms, such as QIIME (12), UCHIME2 (35), mothur (95), and dada2
(24), using reference-based assignment of taxonomies and/or de novo sequence clustering.
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Yet, sequencing this single gene to determine community composition results in several com-
plications, arising from the facts that organisms may carry 1–15 genetically dissimilar, and oc-
casionally fairly distant, copies; that artifacts, such as chimeras and jackpot effects, arise during
the amplification process; and that the resolution of taxa varies depending on the branch of the
bacterial tree of life. Despite innovations to solve these problems, both experimentally and com-
putationally, with programs to remove chimeras and deal with errors inherent to the platform
(24), significant biases may remain. As a result, the studies exploit the low cost and streamlined
computational analyses of 16S rRNA data sets to cover either large dense time courses where in-
creased coverage can mitigate the effects of noise or diverse ecologies where the differences are
more robust.

With the increasing appreciation for dramatic phenotypic differences arising from differences
in the genomic content of organisms and strains, there has been a movement toward using higher-
resolution differences in 16S sequences, called amplicon sequence variants (ASVs). Previously,
DNA sequences would be clustered at 97% sequence identity, a cutoff meant to distinguish be-
tween species while masking the effect of PCR (polymerase chain reaction) or sequencing errors.
Among the benefits of using ASVs rather than clustered 16S sequences are a greater compara-
bility across studies, greater reproducibility, and lack of reliance on previously curated reference
libraries (23).

As part of this trend to obtain greater resolution,whole-microbiome shotgun sequencing, here-
after referred to as metagenomics, is becoming an important data type for many studies aiming to
understand the mechanisms driving microbiome-associated traits. Rather than amplifying a single
gene, all of the DNA within a sample is sequenced, regardless of whether it originated from bac-
teria. DNA is simply extracted, made into libraries, and sequenced either on a short-read platform
(e.g., sequencing by synthesis, such as Illumina’s platform) or on a long-read platform [e.g., single-
molecule real-time (SMRT) sequencing, used by PacBio, or nanopore, used byOxfordNanopore].
Recently,with the decreased costs of DNA sequencing and library preparation, studies have grown
in breadth and scope.

This review focuses mainly on the benefits of using metagenomics and outlining the breadth
of conclusions that can be made using currently available analytical tools, such as greater resolu-
tion of species and strains across phyla and functional content, while highlighting challenges of
metagenomic data analysis (Figure 1). These major challenges include annotating function, given
the relative lack of functional databases for environmental bacteria compared to model organisms,
and the technical challenges of assembly and phasing in heterogeneous environmental samples.

WHAT HAS METAGENOMICS TAUGHT US?

A Trove of New (Draft) Genomes

Many of the earliest metagenomic studies used alignments to reference genomes to assess compo-
sition and function (62). Given a suitable reference catalog of genes, coding regions, or reference
genomes, metagenomic data can be mapped to the reference using a typical alignment software.
Yet, many environmental metagenomic samples, still to this day, lack appropriate representative
reference genomes. A simple study where spores were selected from human gut microbiome sam-
ples revealed 45 novel candidate species (21), despite relatively deep study of the human gut mi-
crobiome. Advances in culturing of organisms are improving our reference libraries of previously
unknown or unculturable species (65, 93), yet de novo assembly methods are still necessary to
fill this knowledge gap. While single-genome assemblers were not appropriate for assembling
metagenomes, because of the varying abundances of bacteria within a community, tools were
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Figure 1

Metagenomic shotgun sequencing, the profiling of all DNA present within a microbiome sample, has many benefits and challenges.
(a) DNA is extracted, made into libraries, and sequenced. The genomic and cellular context is lost during the process, and the output is
reads that need to be organized into meaningful groups. (b) Assembly and binning are general steps for many analyses including
taxonomic and functional profiling. However, many challenges and unknowns remain, here denoted by question marks: (c) Strain
profiling methods have improved, but it is difficult to know what variation is missed; (d) unbinned contigs originating from plasmids,
sequencing errors, or low-abundance (or low-sampled) organisms are indistinguishable; (e) many genes found in microbiome samples
remain unannotated; and ( f ) it is difficult to link metagenomic data to host traits.

designed to account for and leverage these distinctive metagenomic qualities to assemble draft
genomes within complex, heterogeneous assemblies.

Methods to Assemble Metagenomes

Overlap or consensus assembly methods were initially applied for DNA sequence assembly.These
methods use a greedy algorithm and were originally created for Sanger sequencing (4). Given that
pairwise comparisons of every read must be made, they are computationally expensive and became
less suitable for next-generation sequencing (NGS).The algorithm underlying de Bruijn graph as-
semblers breaks the sequencing reads down into uniform k-mers of a specified size, k. The k-mers
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are used as nodes in the graph, and overlapping nodes are connected by an edge. The assembler
then constructs sequences based on the compiled graph. These methods (4, 101, 133) reduced
the computational memory requirements because they essentially compresses the repetition in-
herent to NGS data, negating the need to perform pairwise read alignments. Despite the gains
in performance, several challenges remain. As reads are broken down into k-mers, some genomic
context is lost. Additionally, the choice of k-mer size and the choice of tools can significantly alter
an assembly. One solution helpful for metagenomes has been to employ iterative de Bruijn graph
assembly, which combines graphs from various k-mer sizes (78, 86). Currently, there is no single
best practice. In the Critical Assessment of Metagenome Interpretation (CAMI) challenge (96) to
assemble metagenomes, the simulated data assembly had 39,140 contigs and was 1.97 Gbp long.
However, other programs resulted in a range of results: MEGAHIT (66) resulted in the largest as-
sembly, with 587,607 contigs, of 1.91 Gbp, whereas the smallest assembly, produced by Ray Meta
(11), was 12.3 Mbp long and had just 13,847 contigs. We recommend the review paper by Ayling
et al. (4) and the CAMI challenge (96) for comparisons of these methods.

A subsequent challenge is making sense of the thousands of relatively small contigs that can
result from assembling heterogeneous microbiome data. Whereas contigs could be binned into
genomes based on taxonomic markers, genomes are typically fragmented, incomplete, and con-
taminated. New algorithms to bin contigs have led to higher-fidelity genome assembly. Binning
algorithms use several differentmetrics to group contigs: DNA composition,GC content, tetranu-
cleotide frequency, depth of sequencing coverage, and abundance or coabundance patterns across
multiple samples (2, 53, 57, 127). An alternative method is to bin reads that are predicted to be
derived from the same organism prior to assembly (28). There are also downstream tools that
combine output from several binning tools (99, 107, 116) to refine and recombine contigs with
the goal of identifying cleaner and more complete metagenome-assembled genomes (MAGs).

These techniques have been applied to large numbers of metagenomes to reconstruct draft
genomes in a uniformmanner.Nayfach et al. (77) reconstructed draft genomes from 3,810 publicly
available human gut metagenomic samples, and Pasolli et al. (85) analyzed 9,428 metagenomes
across microbiomes on different body sites. Both studies prioritized assemblies from international
cohorts, including those in areas of the world in which fewer microbiome studies have been per-
formed overall. The former study resulted in over 2,000 newly identified species, accounting for a
50% increase in the phylogenetic diversity of the human gut microbiome.Despite the creative use
of recent tools to recover this vast diversity from individual gut samples, strain-level diversity and
sequencing depth still pose a challenge to MAG assembly. The latter study reconstructed 154,723
MAGs, increasing the mappability of human metagenomic reads from around 67% to over 87%
in gut microbiome samples used in this study, and from 65% to 82% in oral microbiome samples.
These two studies highlight a particularly timely challenge to the field, the need to international-
ize metagenomic sequencing efforts (88). Most of the unknown or uncharacterized species found
in these studies were found in non-Western, low- and middle-income populations.

Metagenomic Assembly Quality

Following assembly, it is important to assess quality. Since there is often no ground truth in
metagenomic sequencing for environmental samples, assembly quality is usually evaluated using
summary statistics from single-genome assembly methods like size, contig N50, and maximum
contig length (14). Completeness and contamination are the two main metrics that researchers
rely on for assessing MAG quality. Completeness relies on the identification of marker gene sets
and can miss strain heterogeneity. Likewise, contamination is derived from a set of single-copy
marker genes and can be complicated if genes overlap contig gaps (36, 84, 100, 112). However,
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many of these tools rely on taxon-specific metrics that are better suited for those organisms that
are well studied, and therefore they lack the same resolution in identification of marker genes for
organisms that are more obscure (84, 126). Other methods address potential contamination by
aligning the assemblies to many references with the ability to report chimeric contigs (75). A set
of standards has been proposed, called the minimum information about a single metagenomic-
assembled genome (MIMAG) (14), emphasizing manual curation and review. With more studies
published obtaining single-cell genomes and/or cultured representatives, we urge a systematic
comparison of curated genomes with those obtained through metagenomic assembly.

Metagenomic genome assembly may still miss key aspects of the true underlying genomic
variation. In order to detect low-abundance organisms, deeper sequencing is required. Shallow
metagenomic sequencing, to as low as 500,000 reads, is a current alternative to amplicon sequenc-
ing in large cohort studies to gather species-level taxonomic and functional information on a large
scale, at roughly the same cost as 16S rRNA sequencing (50). However, this method does not ac-
count for rare organisms and strains. Coassembly of organisms present across genomes (66), or
binning of reads from many samples prior to assembly (28), has a better chance of assembling
low-abundance organisms. Novel methods that use co-barcoded sequencing reads derived from
individual long DNA sequences to provide the origins of reads with which to construct scaffolds
(9), as well as methods that combine high-fidelity short-read sequencing with long-read sequenc-
ing data (8), will undoubtedly aid metagenomic assembly. In fact, these technologies may replace
traditional whole shotgun metagenomic sequencing one day, as their costs are reduced.Obtaining
information on the genomic structure of organisms with multiple chromosomes or plasmids will
still require additional innovations.

Better Compositional Data Than Taxonomic Profiling Alone

Metagenomic sequencing improves the resolution of bacterial community profiling compared to
16S rRNA profiling alone and has the added advantage of being kingdom-agnostic. Despite this
benefit, this leads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying the species present in a metagenomic sample. Up-to-date comparisons and benchmarking
of the available tools and databases are necessary in such a fast-paced field (131).

The Diversity of Host-Associated Viruses, Fungi, and Archaea

Along with the bacterial DNA present in microbiomes, metagenomic data sets often include viral,
fungal, and host DNA. The eukaryotic component has often been ignored, as genome coverage
generally compares poorly to the coverage of bacterial genomes and databases containing full
genomes of eukaryotes found within microbiomes are limited. Nevertheless, efforts to assemble
genomes from metagenomic data sets have revealed that diverse eukaryotes can inhabit the hu-
man infant gut (80) and environments such as geothermal geysers (123). Likewise, a measurable
abundance of fungi inhabiting human skin has been detected (79).

Viruses with DNA-based genomes can also be found within metagenomic data, and occasion-
ally in high abundance. Viral genomes, mainly from bacteriophage, are small compared to bac-
terial or eukaryotic genomes and can be well covered. However, because they are highly diverse
and fewer of the genes in bacteriophage genomes can be assigned functions or even be found in
reference databases (17), their roles remain elusive. There have been efforts to gain a better un-
derstanding of this microbiome component. Numerous computational tools have been developed
to identify elements of phage genomes (41, 92), either integrated prophage or free-living phage.
Deeper sequencing of viral particles isolated from samples reveals the active lytic phage within a
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community (16).Despite the challenges associated with analyzing phage withinmicrobial commu-
nities, there have been several landmark observations, including a role for phage in inflammatory
bowel disease pathogenesis (31). In the marine environment, metagenomic sequencing of a large
number of samples, followed by co-occurrence analysis and abundance estimates of host and asso-
ciated viral genomes, supports an ecological framework where lysogenic viruses dominate at high
host density (29). Phage abundance data from longitudinal studies of the infant gut microbiome
also resemble Lotka-Volterra dynamics (68). Assigning hosts remains a major challenge, although
efforts continue to improve in this sphere (76), where even the hosts of very large, ubiquitous
bacteriophage present in the human gut remained elusive until recently (30, 34, 48).

Host DNA in animal and plant systems is also sequenced along with bacterial, viral, and eu-
karyotic symbiont DNA.Most often, host DNA is removed prior to analysis, and this step is often
required in human metagenomic studies, where host DNA can be identifiable. In certain types of
microbiomes, such as the oral and skin microbiomes, this results in removal of the vast majority of
sequences, up to 90% (38).There are no commonplace uses for the hostDNA. Increasing numbers
of studies link human genotype data with microbiome composition and/or functions to perform
combined genome-wide association studies (13, 90, 120), but we have yet to observe researchers
utilizing human reads from metagenomic samples to this end.

Host-Associated Phenotypes

Metagenomic data analysis has shaped our understanding of the relationship between the micro-
biome and host phenotypes such as health outcomes, growth, and crop productivity. While there
are myriad studies ranging from medicine, agriculture, and the environment, we highlight only
a few notable findings here from larger studies. The Environmental Determinants of Diabetes
in the Young (TEDDY) study comprises almost 11,000 samples from 783 children beginning at
3 months of age until the onset of type 1 diabetes (T1D), or islet autoimmunity, with the goal of
identifying compositional or functional aspects of the gut microbiome that may be predictive of
the onset of T1D (118). It found that microbial factors associated with the onset of T1D were
functionally similar but taxonomically diverse, that the gut microbiome matures faster with ear-
lier cessation of breastfeeding, and that there are reproducible acquisitions of metabolic capabili-
ties. Meta-analyses of smaller individual studies have also revealed important pathways to disease.
Given that there have been over eight metagenomic microbiome studies on colorectal cancer on a
geographically and culturally diverse set of populations, comparative metagenomic analysis can be
used to find robust signals, such as an association with choline metabolism and pathways related
to secondary bile acids (114, 125).

The Tara Oceans voyage was the largest metagenomic sequencing effort of marine environ-
ments to date, involving 243 size-fractionated samples that allowed for viral or prokaryotic en-
richment (111). Assembly of these samples amounted to an excess of 117 million genes from over
35,000 species. Just a single drop (0.4 mL) of ocean water collected from the Sargasso Sea con-
tained 6,236 genomes (average of 38% completeness) (82). Pairwise comparisons of the genomes
found within these ocean water samples found that less than 0.1% of the genomes were from
the same species, indicating the vast diversity of aquatic microbial communities. This example
highlights the challenges inherent in metagenomic sequencing of microbial communities, where
surveying an appropriate amount of diversity to answer a given biological question may be cost-
prohibitive. Therefore, many aquatic studies on important systems like coral reefs rely on ampli-
con sequencing, where assessing community diversity at the species level may be more feasible
(32, 47), especially in the case of time course or perturbation experiments where sampling error
may complicate the interpretation of results.
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Strain-Level Analyses

One of the major advantages of using metagenomic shotgun data is the ability to obtain strain-
level data by resolving variations in single-nucleotide polymorphism (SNP) frequencies in micro-
bial genomes across individuals harboring the same species. Strain-level differences can also be
observed between individuals over time. There has not yet been a consensus among researchers
on the most appropriate method to use, although most programs use SNPs found in single-copy
core genes, either retrieved from reference genomes (1, 39, 102, 115) or taken from the sample’s
MAGs (18). These genes are generally phylogenetically conserved; therefore, contamination and
completion are easy to determine. Many of these genes encode proteins found within the ribo-
some, which are rarely horizontally transferred.Within a species, the mutation frequency in these
genes is often no more than one SNP per read, thus complicating phasing methods that would
link sets of SNPs into single genotypes.

The study of transmission of bacterial species between environments, between hosts and the
environment, or between hosts typically has relied on full genome sequences. However, head-
way has been made in understanding the transmission of strains within complex communities by
metagenomics studies. Simple examination of the dominant strain of each organism present in a
community has revealed differences in the colonization of specific species after fecal microbiota
transplantation (67). Improvements to this method have shown that often people are colonized
by a consortium of strains within a single species from a donor, rather than a single strain (102).
Vertical transmission and colonization of strains from mother to newborn infant are observed by
using SNP and strain-specific gene content methods (39, 130). These patterns have been shown
to persist even in adult family members. Adult twin pairs share higher frequencies of microbial
SNPs in common strains than nontwin pairs; and shared SNPs and strain-specific flexible gene
content are more commonly found for species in oral and gut microbiomes of family members
(128). Interestingly, metagenomic data mining has also revealed evidence of transmission between
spouses, showing the malleability of the adult human microbiome (18).

Functional Assessments of Metagenomes

The main advantage of metagenomic sequencing over amplicon sequencing is the ability to per-
form functional profiling of microbial communities. This normally entails aligning reads to either
known or de novo–assembled genes to obtain gene abundances and infer functional abundances
(by merging gene abundances by gene family or function), regardless of bacterial host. In other
words, unlike taxonomic profiling, these methods do not rely on marker gene sets or even assem-
bly in some cases. Many packages exist to streamline this process (42, 52). Caution needs to be
taken when performing functional profiling because up to 50% of genes within host-associated
and environmental microbiomes lack annotated functions (54). For example, the earliest attempts
at functionally profiling human gut microbiomes as part of the Human Microbiome Project, a
large-scale effort to characterize the microbiomes of 300 individuals across several body sites with
16S rRNA and metagenomic whole-genome shotgun sequencing, led to the conclusion that func-
tional profiles are conserved across body sites, despite vast differences in microbial composition
(51). This conclusion is largely based on the portion of genes that were capable of being function-
ally annotated at that time, which are largely conserved core genes present in all microbes. These
conclusions have largely been revised by analyzing differences between the core and distinguish-
ing functions between body sites, and by acknowledging the extent to which genes are annotated
functionally (70).

Time courses are especially useful to examine relevant changes in the microbiome that occur
alongside host physiology.Metagenomic sequencing of oral, vaginal, and gut microbiome samples
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of pregnant mothers reveals the dynamic nature of the microbiome during pregnancy. Aside
from large intraindividual differences, gestational age of the fetus and health complications of the
mother correlate with gene abundances of the mother’s microbiome (45). Although the functional
pathways of the various microbiota remained stable over the length of gestation, there were a
few interesting examples of functions changing over time. For example, an increase in fermenter
activity in the guts of the subjects over gestational time seems to suggest that fermenters could
be enriched during pregnancy.

For environmental samples, a similar approach can yield insight into the functional roles of
specific microbial communities and the effects of anthropogenic change on these communities.
For example, metagenomic sequencing has allowed us to see that sustained warming in grass-
lands leads to a shift in microbial metabolic processes such as organic matter decomposition (81).
Antibiotic use also has a significant effect on environmental communities, in addition to host-
associated communities. Built environment microbial communities, such as those found in urban
sewage systems, could be a major route for the spread of antibiotic resistance genes. Within an
urban Chinese sewage system, seasonal differences of 381 different antibiotic resistance genes
were found using metagenomic data, and the majority of these genes were associated with known
human gut commensal bacteria (109).

Interesting Miscellanea

The microbiome has served as a unique platform for bioprospecting, and this has been aided by
metagenomics approaches. In short, most analytical methods rely on examining metagenomic se-
quences for new enzymes that share some homology or genetic architecture with known pro-
teins or operons. Biosynthetic gene clusters (BGCs) can be identified by observing canonical
operon structures harboring sequential enzymatic processes (10). Recent advances make direct use
of metagenomics reads to find potentially interesting BGCs, such as those that produce type II
polyketides, which comprise clinically important drugs such as doxorubicin and tetracycline (110).
Similarly, novel CRISPR-Cas systems can be identified across diverse microbiomes, enabling new
functionalities and the identification of novel PAM (protospacer adjacent motif) sites that differ
from the canonical NGG sequence or with more compact genetic architecture (22). Bioprospect-
ing for biofuel enzymes across environmental metagenomic data sets can also be used to prioritize
which environmental samples to use for testing (27). These types of studies will often require
cloning and expressing these genes exogenously to confirm function.

Experimental methods to determine gene functionality are well defined. One example is using
metagenomic data to determine target gene(s), extracting theDNA sequence, and using expression
vectors to insert and express the gene in bacteria for functional screening (15, 105). Although this
method has had some success with larger gene operons, including identifying certain antiprolifer-
ative, anticancer, and antibiotic compounds (26), this approach is generally more suited for those
functions encoded by small operons of few genes. Samples from the environment such as soil mi-
crobiomes have been used to find new biologically and environmentally important phosphatases,
as well as new domains encoding phosphatase activity, thus extending the classic categorization of
known phosphatases (25).

Horizontal Gene Transfer

Horizontal gene transfer represents one of the major challenges to metagenomic assembly, yet
metagenomics has been a useful tool in understanding this process. The flexible portion of a bac-
terium’s genome allows the organism to rapidly adapt to changing environmental conditions by
acquiring and incorporating novel functions, potentially altering its relationship with its host or
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providing a competitive edge against other organisms, and it is therefore of high importance to
microbiome researchers. Although significant progress has been made using reference genomes
(3, 103) or single-cell genomes (19, 64), current methods fall short on reliably assembling mo-
bile genetic elements and assigning mobile genetic elements to a host genome. There is great
variability in mobile genetic element structure. For example, integrated transposons and certain
phage comprise inverted or direct repeats and can vary between hundreds to tens of thousands
of base pairs; plasmids and phage may contain large amounts of host genome. Recent evidence
based on long-read metagenomic data reveals high mobility of transposable elements within a
single organism, resulting in large heterogeneity within a single species in one microbiome (135).
Several methods have been developed to try to apply alignment-based approaches to identify mo-
bile genetic elements, either by examining the variation in reads aligning to reference genomes
to identify flexible portions of genome assemblies (18, 33) or by aligning to reference genomes to
identify those genomic regions that are not vertically conserved (106). Long-read metagenomic
sequencing of microbiome samples will enable the capture of integrated mobile genetic elements
and allow researchers to explore the heterogeneity of these elements within and across genomes.
Additional tools, such as Hi-C sequencing, in which genomic DNA may be cross-linked and lig-
ated with plasmid DNA (108, 129), may serve to enable better metagenomic assemblies that link
plasmids with their hosts.

Replication Rates of Organisms

Relative rates of replication can be obtained using shotgun metagenomic data. Bacteria replicate
their genomes bidirectionally from a singular origin of replication. Therefore, a replicating pop-
ulation of cells should have an abundance of metagenomic reads that map near the origin, relative
to the replication terminus. This works well in cultured bacteria, and there has been success us-
ing metagenomic data, most notably in identifying replication differences across inflammatory
bowel disease (IBD) and type 2 diabetes cohorts (60). Although replication rates are most readily
estimated when there are phylogenetically close reference genomes with well-known replication
origins, these methods have also been applied to assembled metagenomes (20). In these cases,
assembled contigs need to be binned into draft genomes and then ordered according to their rel-
ative coverage to determine the overall rate of replication. There are some inherent challenges
with using such a technique on MAGs that arise from incorrect binning of contigs or scaffolds
and the presence of promiscuous mobile genetic elements, which may skew coverage and overes-
timate replication rates. The success of this approach largely depends on the quality of the MAGs,
and this method is much easier to perform in microbiomes for which there are good reference
genomes.

WHAT HAS METAGENOMICS MISSED?

Analyzingmetagenomic data requires careful consideration of the treatment of genome assemblies
and abundances.CompositeMAGs can lead to inaccurate interpretations from inflated abundance
or prevalence estimations, deflated diversity from ignoring ormissing strain-level information, and
reduced refinement in binning.Reporting quality metrics such as those proposed by theGenomics
Standards Consortium (14) may lessen the burden on the end user to either determine the quality
of publicly available MAGs or make incorrect assumptions. Metagenomic data sets almost exclu-
sively rely on compositional quantification, further complicating analysis. We have only recently
started reckoning with methods for assessing absolute microbial abundances and transferring this
knowledge to metagenomic data (117). Aside from these technical issues, there are many aspects of
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microbial ecosystems that are missed when shotgun sequencing is performed alone on microbial
communities.

Ecoevolutionary Modeling

Metagenomic approaches have allowed us to obtain higher resolution than taxonomic profiling,
and these approaches are poised to shed light on other aspects of microbial community assembly
and evolutionary trajectories, yet the approaches are still fairly nascent in this regard. A remaining
challenge is that information derived from individual genomes, which can be crucial for ecological
or evolutionary inferences, can be lost. For example, population variation in genetic architecture,
mobile genetic elements, and SNP diversity may be difficult to ascertain. There have been several
early efforts to draw evolutionarymodels frommetagenomic data alone (44). From an examination
of strain-level differences across gut microbiome samples, it appears that gene gains and losses are
fairly common and can sweep to high frequencies relatively quickly, though strain replacement
is the more dominant trend over longer periods of time. Differences in gene copy number vari-
ants within microbial genomes have proved to be informative about the function, and possibly
the evolutionary trajectories, of specific organisms (46, 132). To some extent, it will take time for
ecoevolutionary theory to develop, as we are still learning about the genomic structure in micro-
bial communities in their natural environment. For example, a large number of small genes were
recently uncovered in metagenomic data sets, many of whose functions are unknown (94).

Phenotype and Comprehensive Functional Profiling

Phenotype is a complex trait, and metagenomic data alone are often insufficient in determining
phenotypic traits. As an example, many of the metabolites in the human gut microbiome have
strong associations with microbial species and pathways present in metagenomic data (119), but
predictions of metabolic output using metagenomic data alone can have high variance (73). First,
phenotypic differences may be driven by large differences at the level of transcription. For ex-
ample, Verrucomicrobia was identified as highly abundant in soil communities, leading to the as-
sumption that it was vital for soil health and functioning. However, metatranscriptomics analysis
revealed that Verrucomicrobia is metabolically inactive in the soil. As another example, metatran-
scriptomics of ruminant livestock showed that a mix of bacterial, archaeal, and eukaryotic species
are active during plant degradation and methane production, which may be missed when focusing
on either bacteria or eukaryotes alone (104). Second, gene-gene interactions across species may
drive specific outputs of pathways, yet few of these in natural microbial communities are known.
Examining co-occurrence networks may provide clues to codependent organisms (37, 43, 63), yet
these methods have not been applied widely to metagenomic data sets. Modeling metabolic out-
puts using metagenomic data (71) is another important step toward this end, yet these models tend
to be more accurate for less diverse microbiomes, such as those found in termites (61).

Despite these considerations, the predominant limitation in translating metagenomic data to
phenotype is the overall proportion of genes we can annotate. KEGG (56), COG (113), PFAM
(40), TIGRFAM (49), MetaCyc (58), and other databases used to assign functions to assembled
genes only capture roughly half of functions in a commonly assayed microbiome, such as the hu-
man gut (54); however, they capture a much smaller fraction in diverse, less-sampled microbiomes
such as those from certain soil communities, less-studied animal microbiomes, and those from hu-
man populations living in low- and middle-income countries or remote areas (77, 85). Large-scale
functional studies will be vital to improving functional databases, but these experiments are labo-
rious, and curation of these databases is often done manually.
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Alternative methods have been applied to microbial communities to gain additional functional
insight. Stable isotope probing using isotopically labeled substrates can inform researchers about
the specific bacteria utilizing the substrate (87, 124). The labeled substrate gets incorporated into
DNA that can be separated and sequenced. One interesting example is the identification of new
bile salt hydrolase genes in the gut microbiome using probes that label active enzymes that can
be assayed with proteomic tools and metagenomic sequencing to identify those proteins (83). To
determine which organisms are metabolically active in a sample, PMA (propidiummonoazide) has
been used to distinguish between live and dead cells. It intercalates DNA, but only in those cells
with compromised membranes. Light exposure causes covalent bonds to form with the DNA,
resulting in fragmentation and rendering it unamenable to DNA sequencing. This method has
been used widely for samples prior to 16S rRNA amplicon sequencing, but it was recently used
to identify the live portion of a saliva microbiome sample that underwent metagenomic sequenc-
ing (74). Examples that probe specific functions will enhance our understanding of metagenomic
communities above metagenomics alone.

Similarly, integrating metagenomic, metatranscriptomic, and metabolomic data can alterna-
tively improve functional assessments of communities. There has been a sharp increase of meth-
ods that integrate omics data. The multi-omics approach is valuable in that it does not require
bacterial culturing, which is an impediment to examining microbiome function. In phase 2 of
the Human Microbiome Project, known as the Integrative Human Microbiome Project (iHMP),
1,785 individuals from three microbiome-associated condition cohorts were sampled: pregnancy
and preterm birth, IBD, and type 2 diabetes. A wealth of data was collected, including gut mi-
crobiome metagenomes, metatranscriptomes, proteomes, metabolomes, and virome data (69). By
integrating these data, the authors were able to associate functions and molecular dynamics to
specific taxa of the gut microbiome. Similarly, omics studies reveal that twin pairs share metabolic
pathways on average almost twice as much as they share species (119), suggesting that in the search
for therapeutic targets, genetic associations, or biomarkers, it may be more informative to study
the functions of the gut microbiome rather than the organismal composition or species diversity.

In addition to omics performed on microbial communities, an increased number of studies
are also incorporating measurements of the host. Zhou et al. (134) used a longitudinal multi-
omics approach to study host-microbe dynamics in prediabetes. By integrating metagenomes,
transcriptomes, metabolomes, cytokines, and proteomes from 106 individuals, they were able to
detect molecular signatures in 1 person that preceded the onset of type 2 diabetes, which included
the inflammation markers interleukin-1 receptor agonist and high-sensitivity C-reactive protein.
More broadly, they were able to characterize thousands of host-microbe interactions that were
distinctive between insulin-sensitive and insulin-resistant individuals. Techniques to integrate the
diversity of data sources, each with their own benefits and limitations, are still under development
(7).

Spatial Analyses of the Microbiome

Missing frommany metagenomic analyses are temporal and spatial dynamics. Time course exper-
iments are relatively expensive, but several large-scale temporal data sets are starting to emerge,
such as a recent study of patients with IBD (89). Similar to 16S rRNA amplicon data sets, metage-
nomic time course data analysis requires not only careful managing of the compositionality but
also autocorrelation. Techniques to obtain spatial data about microbiomes are emerging (91, 97,
98, 121, 122), by applying species-level probes or by sequencing proximate microbes captured in
preserved microscale blocks or by performing laser dissection of fixed communities. These tech-
niques capture species-level interactions and have not yet scaled to accommodate metagenomic
sequencing approaches.
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INNOVATION AND FUTURE DIRECTIONS

Metagenomic analyses ofmicrobiomes will be vastly altered in the coming decade by technological
and accessibility improvements in DNA and RNA sequencing. As long-read sequencing becomes
cheaper, it will negate the need for elaborate methods for genome assembly and phasing of SNPs.
Since the quality of draft genomes assembled from short-read sequencing data may be highly
variable, and few studies incorporate reference genomes for comparison, long-read sequencing
will go a long way to improve the quality of thesemetagenomic assembled genomes.The increased
use of metagenomics will create new challenges in data storage and data reporting, especially as
the types of data platforms (e.g., short-read, long-read, Hi-C, Tn-seq, functional screening) grow.
The size of future data sets will necessitate solutions for data compression, high-speed search, and
memory-efficient assembly methods, some of which are starting to become available (6, 28, 59).
Standard protocols for data reporting and submission will be important, especially in terms of
what information and metadata to provide.

If the expenses and error rates associated with long-read sequencing are reduced, many of the
challenges associated with short-read sequencing will fade. Assemblies will be less fragmented,
SNP phasing will be inferred based on co-occurrence on reads, and integrated mobile genetic
elements will be associated with their flanking genomes. Nevertheless, this will not fully solve the
problem of associating extrachromosomal elements with their host genomes. Alternatively, single-
cell genome sequencing may provide the technological advance that surmounts some of these
problems. Yet, even the largest of studies is several thousand cells, orders of magnitude below
what is typically sampled in a shotgun metagenomic sample. Currently single-cell sequencing
technologies are limited by the cost, and the quality of the genomes is highly variable, resulting
in a large amount of data loss.

Despite these projected improvements,methods to assign functions to the vast number of genes
within the microbiome are still necessary to understand the mechanisms underlying microbiome-
related phenotypic outcomes. It was recently discovered that a single-amino-acid-residue differ-
ence in the dopamine dehydroxylase (DahD) gene in Eggerthella lenta altered whether the phar-
maceutical l-dopa remained active in microbiome samples from a cohort of patients with Parkin-
son disease (72). This level of detailed understanding of gene function will be required for the
research field to go beyond characterization of microbiomes to understanding the mechanisms
underlying an overall phenotype. Examination of modifications of DNA, such as methylation
patterns obtained using single-molecule real-time (SMRT) sequencing (5), can reveal interest-
ing patterns of plasmid mobility within natural microbial communities. Technological innovation
will reveal interesting layers of organismal interactions, functional roles, evolutionary trajectories,
and niche occupancy in microbial communities, which will lead to a better understanding of how
to shape communities to achieve a prosperous outcome for health, agriculture, or environmental
sustainability.
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